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Beyond Logical Structure of Quantum Mechanics: An Algebra of
Projection Operators in Quantum Field Theory
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Abstract An algebra is derived, which generates dynamics of the quantum field theory (QFT),
based on creation and annihilation operators. We show the existence of a commutative subalge-
bra which determines microscopic projective processes, and is sufficient to incorporate unitary
transformations of all global phenomena.
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Von Neumann’s efforts of reconstructing quantum mechanics based on experimentally testable
propositions bare fruit as the logic of quantum mechanics [1]. The basic idea of the logic of quan-
tum mechanics is simple: any statement about quantum phenomena, no matter how complicated,
should consist of the atomic propositions that its truth value is determined by the experiment. In
other words, the whole of quantum mechanics should be explained by the fact that is established
experimentally.

Traditionally, the lattice of any closed subspaces of the given Hilbert space is called the logic
of quantum mechanics, or simply called quantum logic [6]. Since any closed subspace one-to-one
corresponds to the projection onto it, the logic of quantum mechanics is rephrased as the lattice
of projections.

However, when it comes to discuss quantum field theory (QFT), such lattice formulation is not
applicable. That is, atomic propositions, namely projections, of the logic of quantum mechanics
is no more atomic: it is further decomposed into the creation and anihilation operators.

For this reason, we try to find a small basic algebra of projection operators which generates
dynamical processes of QFT. Since there are only two types of different operators in the QFT,
namely the creation operator a† and annihilaton operator a, the algebra is appropriate for the
foundation of QFT rather than the logic of quantum mechanics.

To begin with let us fix the rule how a particle with information x is created or annihilated
from the state vector |ψ〉 in H. We denote by |·〉 the state if we have no information. If we know,
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or we can check that there is a quantum field (or simply particle) with information x in the state,
we denote it by |x, ·〉. These states can be transformed each other by creating and by annihilating
a particle from the states as follows:

|x, ·〉 = a†x|·〉, |·〉 = ax|x, ·〉. (1)

It is possible that the state is either in |·〉 or in |x, ·〉, but not able to decide. Then the state
is given by their super position with α, β being complex numbers:

|ψ〉 = α|·〉+ β|x, ·〉. (2)

We assume that a particle with x does not annihilate from |·〉, nor create another one to |x, ·〉.
We represent this situation as

a†x|x, ·〉 = 0, ax|·〉 = 0. (3)

0’s in the right hand sides mean that the states on the left are not physical.

If we define
Px := a†xax, P⊥x := axa

†
x

we immediately obtain from (1)

Px|x, ·〉 = |x, ·〉, P⊥x |·〉 = |·〉. (4)

We can say, from these results that Px and P⊥x are operators which check if a particle with
information x exists or not, respectively. Applying the operations P 2

x , (P⊥x )2, Px + P⊥x to |ψ〉
given by (2) and using (4) we find

P 2
x |ψ〉 = Px|ψ〉, (P⊥x )2|ψ〉 = P⊥x |ψ〉,

(Px + P⊥x )|ψ〉 = |ψ〉.

Because |ψ〉 is an arbitrary state

P 2
x = Px, (P⊥x )2 = P⊥x (5)

Px + P⊥x = 1 (6)

must hold. (5) means that Px and P⊥x are projection operators.

Operating a†xa
†
x and axax to |ψ〉 of (2), and using (1) and (3), we obtain

axax|ψ〉 = 0, a†xa
†
x|ψ〉 = 0.

Since |ψ〉 is arbitrary
axax = 0, a†xa

†
x = 0 (7)

must hold irrespect to the state. These relations are called the exclusion principle of Fermionic
particles in the QFT.

It is apparent that the operators ax and a†x exchange each other under the time reversal. In
order to make it more complete we introduce conjugate states 〈ψ| by

〈·, x| = 〈·|ax, 〈·| = 〈·, x|a†x. (8)

It follows from (3)
〈·|a†x = 0, 〈·, x|ax = 0.
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We call this symmetry a creation annihilation duality, which we represent symbolically ax 

a†x, |ψ〉 
 〈ψ|. If we define the inner product of the states |ψ〉 and 〈ψ′| by 〈ψ′|ψ〉, we find
immediately

〈·|x, ·〉 = 〈·, x|·〉 = 0 (9)

from (3).

Now we consider the cases in which more than two independent information, say x and y,
are included. We then define, in the case x 6= y,

axay = −ayax, a†xa
†
y = −a†ya†x, axa

†
y = −a†yax.

The minus signs on the right hand sides are due to the fact such that in the case x = y the
exclusion principle (7) holds as well. When there are two independent information the general
physical state is of the form

|ψ〉 = α|·〉+ β|x, ·〉+ γ|y, ·〉+ δ|x, y, ·〉 (10)

with α, β, γ, δ being arbitrary complex numbers.

In addition to Px and Py there is another bilinear combination of the creation and annihilation
operators, namely a†yax, which changes the state |x, ·〉 to |y, ·〉. In the QFT every physical process
can be decomposed into summation of products of only two types of bilinear operators either
a†yax with x 6= y, or a†xax = Px. Therefore these are sufficient to formulate all physical processes
in the QFT. An important observation in our argument is that the operator Py

 

x defined by

Py

 

x := a†yUyxax + axa
†
x (11)

is a projection operator satisfying [7]

P 2
y

 

x = Py

 

x

for any c-number function Uyx. If Uxx = 1, (11) becomes Px

 

x = 1 because of (6). Let us call
Py

 

x the transition operator of the state from x to y. In fact if we apply Py

 

x to |ψ〉 of (10),
we find

Py

 

x|ψ〉 = α|·〉+ Uyxβ|y, ·〉+ γ|y, ·〉.

Notice that only information x is changed into y but leaving all other information unchanged.
The missing of the δ term is reasonable because of the exclusion principle.

The main contribution of this paper is a discovery of a closed algebra formed by the projection
operators Py

 

x and Px, when the function Uyx satisfies the connectivity condition

UzyUyx = Uzx. (12)

Using the notation [A,B] := AB −BA, it is given by

[Px, Pw] = 0, for all x,w

[Py

 

x, Pw] = Py

 

x + Px − 1,

if w = x, for all x, y, z

= −Py

 

x − Px + 1,

if w = y, for all x, y, z
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[Py

 

x, Pz

 

w] = −Py

 

x + Pz

 

x, (13)

if w = x, for all x, y, z

= Py

 

x − Pz

 

x,

if w = y, for all x, y, z

= 0, if z = y, for all x, y, w,

which we call the projection algebra PA in the QFT.
This algebra PA is sufficient to determine local properties of dynamics of the QFT, hence

all microscopic behaviour of quantum phenomena. We can derive global view of all physical
processes by the exponentiation of this algebra according to the well established method in the
QFT. In other words the projection operators are the generators of global dynamics. From this
point of view it is remarkable that the function Uyx in (11) does not appear explicitly in the
algebra PA. Hence it does not play any role in generating projective dynamical processes.

When an algebra is given, which generates the dynamics of a physical system, it is important
to know a commutative subalgebra of generators, in order to specify the system. Upon some
investigations of (13) we find a set of three operators Py∧x, Py∨x, Py

 

x, defined by

Py∧x := PyPx, Py∨x := Px + Py − PyPx,

Py

 

x := a†yUyxax + axa
†
x, for all x, y. (14)

They are not only commutative with each other

[Py∧x, Py∨x] = [Py∨x, Py

 

x] = [Py

 

x, Py∧x] = 0, (15)

but also projective by themselves

P 2
y∧x = Py∧x, P 2

y∨x = Py∨x, P 2
y

 

x = Py

 

x.

By applying these operators to the state (10) we obtain

Py∧x|ψ〉 = δ|x, y, ·〉, Py∨x|ψ〉 = α|x, ·〉+ β|y, ·〉+ δ|x, y, ·〉.

It is interesting to notice that Py∧x and Py∨x are extended as the most fundamental elements
of the commutative lattice. That is, if the binary relations ∧ (meet) and ∨ (join) on the set of
projections is defined by

P ∧ P ′ := PP ′ and P ∨ P ′ := P + P ′ − PP ′

for any projections P and P ′, we obtain Py∧x = Py ∧ Px and Py∨x = Py ∨ Px.
However, only Py

 

x cannot be extended as is the case of Py∧x and Py∨x, because Py

 

x is
defined based on the non-projection operator a†yUyxax. In other words, Py

 

x is not captured by
the conventional lattice theory.

If the operators of (14) are all self-adjoint, the subalgebra is called the Cartan subalgebra.
However this is not our case because Py

 

x changes the state |x, ·〉 to |y, ·〉, hence is not Hermite.
Nevertheless the set of operators (14) will play a central role when the algebra is exponentiated
to represent global phenomena.

We now turn our attention to the global view, so that our consideration is not constrained
to two microscopic level states of (10). Once we incorporate other states like |z, ·〉 into account,
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the operator Pz

 

y does not commute with those of (14), hence the subalgebra (15) must be
extended to the PA.

In order to see how it works let us consider a transition of a particle in the initial state |x0, ·〉
to other state |xn, ·〉 after n steps. We may specify U by a gauge field A(x) according to

Uyx = exp

(
i

∫ y

x

A(x′)dx′
)

which satisfies the connectivity condition (12). Using the PA we can show

[Pz

 

x, Pz

 

yPy

 

x] = 0.

After a simple manipulation we find

〈·, xn|Pxn

 

xn−1
· · ·Px2

 

x1
Px1

 

x0
|x0, ·〉

= 〈·|Uxnxn−1
· · ·Ux2x1

Ux1x0
|·〉 = Uxnx0

(16)

showing that an ordered sequence of transitions yields a unitary transformation from |x0, ·〉 to
|xn, ·〉.

Usually it is said that there are two distinct dynamical processes in quantum mechanics,
namely the projection and the unitary transformation. The latter nature is described by the
Schrödinger equation. It is, therefore, remarkable that the unitary transformation is incorpo-
rated into the projection operator quite naturally, in our approach, owing to the PA.

To be more general we extend (10) to study a state of n particles given by

|ψ〉 =

{0,1}∑
i1,i2,··· ,in

αi1,i2,··· ,in |i1, i2, · · · , in, ·〉

=
∑

i1,i2,··· ,in

αi1,i2,··· ,in(a†1)i1(a†2)i2 · · · (a†n)in |·〉 (17)

Here ik takes values either 1 or 0 for each k ∈ {1, 2, · · · , n}. For simplicity we will use, hereafter,
the notation I := {i1, i2, · · · , in} to represent all possible sets of n combinations of 0 or 1. αI

is an arbitrary constant which fixes the weight of state for every choice of I. There are 2n such
cases, which we have to sum up over all combinations in

∑
I . Then (17) is simply written as

|ψ〉 =
∑

I αI |I, ·〉.

We notice that

PI := (P1)i1(P⊥1 )1−i1(P2)i2(P⊥2 )1−i2 · · · (Pn)in(P⊥n )1−in

is a projection operator. In fact, if J = {j1, j2, · · · , jn}, it satisfies

PJ |I, ·〉 =

{
|I, ·〉, if ik = jk, k = 1, 2, · · · , n
0, othewise.

In other words PI projects |ψ〉 to the particular state |I, ·〉.
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Among projections, there are two different types of change of the state |ψ〉. One is to change
the weight αI in (17) dependent on I. It will be done if we operate, say

∑
I βIPI , to |ψ〉, from

which we obtain ∑
I

βIPI : |ψ〉 → |ψ′〉 =
∑
I

βIαI |I, ·〉

The second type of the change of state takes place by exchange particles from one place to
another. In order to simplify the argument we assume a set of first k particles Ik = {i1, i2, · · · , ik}
change to other set in the complement I⊥k . Then the operator

Pϕ

 {Ik} :=
∑
Ik

ϕIk(a†k+1, · · · , a
†
n)ai11 a

i2
2 · · · a

ik
k

× (P⊥1 )1−i1(P⊥2 )1−i2 · · · (P⊥k )1−ik + P⊥1 P
⊥
2 · · ·P⊥k

transfoms the states Ik to those of I⊥k , according to∑
Ik

αIk |Ik, ·〉 →
∑
Ik

αIkϕIk |·〉.

Here ϕIk(a†k+1, · · · , a†n) is an arbitrary polynomial function of a†k+1, · · · , a†n in I⊥k . This is again
a projection operator, satisfying

P 2
ϕ

 {Ik} = Pϕ

 {Ik}.

Some examples are in order:

– ϕx(a†y, a
†
z) = a†y + a†z

Py+z

 

x : |x, ·〉 → |y, ·〉+ |z, ·〉,

– ϕx(a†y, a
†
z) = a†ya

†
z

Pyz

 
x : |x, ·〉 → |y, z, ·〉

,
– ϕx+y(a†z, a

†
w) = a†za

†
w

Pzw

 

x+y : |x, ·〉+ |y, ·〉 → |z, w, ·〉.

To conclude, we would like to mention the mico-macro correspondence. As is well known a
microscopic transition between states takes place projectively in quantum physics, as well as in
the QFT. On the other hand the global behavior of quantum states is determined by unitary
transformation, so that the Schrödinger equation is satisfied. If we must incorporate these two
different views to a physical system, how they could be consistent each other? This question has
been discussed repeatedly since the foundation of quantum mechanics [2].

Our answer to this question is rather simple. Our projective operator Py

 

x of (11) which
executes the microscopic transition from x to y has a freedom to incorporate internal (or gauge)
symmetry U dependent on x and y. In global picture all creation and annihilation operators
disappear upon taking an inner product of states, such that only freedoms of unitarity are
left. Therefore projective nature in microscopic level is naturally turned to unitary one. An
important fact is that when operators is replaced by unitary functions the connectivity condition
(12) is fulfilled, as we have shown in some example (16). This means that nonanalytic feature of
projective transformation in microscopic level is changed to a smooth function, hence explains
how the transition between micro and macro physics undergoes.

Recently there have been some interesting arguments of the micro-macro correspondence,
within the framework of quantum mechanics, based on category theory [3,5]. We can also see
our formulation of the QFT from the view point of category theory. In our case the projection
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operator Py

 

x, consisting of a product of creation and annihilation operators, plays the role of a
morphism which connects one physical state to another. We have shown that this operation can
be generalized to arbitrary number of states. Moreover, since the projective operators form the
algebra (13), it is straightforward to see global behavior of the system simply by exponentiation
of the algebra. As far as we focus our attention to global behavior of transition amplirtudes
we are able to describe physical phenomena in terms of general languages, without reference to
microscopic processes.

There is also a work on categorical quantum mechanics of the QFT [4]. Since a harmonic
oscillator model was studied in the work, hence discussing Bosonic fields, it does not share our
results which are derived from Fermionic nature of fields.
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